• Какие бывают виды природных ресурсов? Нетрадиционные источники энергии Низкопроницаемые продуктивные коллектора.

    Введение . 3

    Нетрадиционные виды и источники углеводородного сырья . 4

    Тяжелые нефти и нефтяные(битуминозные) пески. 4

    Низкопроницаемые продуктивные коллектора. 6

    Водорастворенные газы.. 6

    Газогидраты.. 7

    Заключение . 11

    Список использованной литературы: . 12

    Введение

    XXI век уже давно прогнозируется, как век исчерпания основной части ресурсов углеводородов, вначале нефти, а затем и газа. Процесс этот неизбежен, поскольку все виды сырья имеют тенденцию выработки запасов, причем с той интенсивностью, с которой оно осваивается и реализуется. Если учесть, что современные мировые энергопотребности обеспечиваются в основном нефтью и газом -60% (нефть-36%, газ-24%), то все виды прогнозов об их исчерпании не могут вызывать сомнений. Меняются лишь сроки завершения углеводородной эры человечества. Естественно, что время выхода на заключительный этап освоения углеводородов не одинаково на разных континентах и в разных странах, но для большинства оно настанет при текущих объемах добычи нефти в пределах 2030- 2050 гг., при условии достаточно заметного воспроизводства их запасов. Однако уже около 20 лет добыча нефти в мире опережает прирост ее запасов.

    Понятие традиционных и нетрадиционных ресурсов углеводородов не имеет однозначного определения. Большинство исследователей, понимая, что природные процессы и образования часто не имеют четких разграничений, предлагают использовать при определении нетрадиционных запасов и ресурсов такие понятия, как трудноизвлекаемые запасы и нетрадиционные ресурсы УВ. Трудноизвлекаемые запасы, добычной потенциал которых практически не используется, мало чем отличаются от традиционных запасов нефти и газа - за исключением ухудшения их геолого-промысловых характеристик. К нетрадиционным ресурсам УВ относятся, как принципиально отличные от традиционных по физико-химическим свойствам, так и по формам и характеру их размещения во вмещающей породе (среде).

    Нетрадиционные ресурсы УВ являются гораздо более «дорогими». Поэтому часто при отнесении к тем или иным группам сырья рассматриваются не только сугубо геологические и геолого-технические причины, но и, например, географо-экономические, социальные, конъюнктурные, стратегические и пр.

    В целом, если говорить о системе нетрадиционных ресурсов УВ всех видов, то они огромны. В сумме по приблизительным подсчетам превышают 105 млрд т. н.э., но эти объемы не бесспорны, т.к. это рассеянные УВ в непродуктивной среде, т.е. даже в отдаленной перспективе не все из них смогут быть освоены.

    Нетрадиционные виды и источники углеводородного сырья

    Нетрадиционные ресурсы углеводородов, это та их часть, подготовка и освоение которых нуждается в разработке новых методов и способов выявления, разведки, добычи, переработки и транспорта. Они сосредоточены в сложных для освоения скоплениях, либо рассеяны в непродуктивной среде. Они плохо подвижны в пластовых условиях недр, в связи с чем нуждаются в специальных способах извлечения из недр, что повышает их себестоимость. Однако, достигнутый в мире прогресс в технологиях добычи нефтегазового сырья допускает освоение некоторых из них.

    На начальном этапе исследований считалось, что их резервы практически неисчерпаемы, учитывая их масштабы (рис. 1) и широкое распространение. Однако, многолетнее изучение различных источников нетрадиционных ресурсов углеводородов, проведенное во второй половине прошлого века, оставило в качестве реальных для освоения только тяжелые нефти, нефтяные пески и битумы, нефтегазонасыщенные низкопроницаемые коллектора и газы угленостных отложений. Уже на 14- Мировом нефтяном конгрессе (1994 г., Норвегия) нетрадиционные нефти, представленные только тяжелыми нефтями, битумами и нефтяными песками, были оценены в 400- 700 млрд. т, в 1,3- 2,2 раза больше традиционных ресурсов -. Проблематичными и дискуссионными в качестве промышленных источников газа оказались водорастворенные газы и газогидраты, несмотря на их широкую распространенность.

    Рис. 1 Геологические ресурсы углеводородов.

    Тяжелые нефти и нефтяные(битуминозные) пески.

    Геологические ресурсы в мире этого вида сырья огромны- 500 млрд. т. Запасы тяжелых нефтей с плотностью более вполне успешно осваиваются. При современных технологиях их извлекаемые запасы превышают 100 млрд. т. Особенно богаты тяжелыми нефтями и битуминозными песками Венесуэла и Канада.

    В последние годы растут объемы добычи тяжелых нефтей, составляя по разным оценкам около 12-15% от общемировой. Еще в 2000 г. в мире из тяжелых нефтей добывалось лишь 37, 5 млн.т. в 2005 г.- 42,5 млн.т., а к 2010-2015 гг. по прогнозу может составить уже около 200 млн.т., но при мировых ценах на нефть не ниже 50-60$/брр.

    Тяжелых нефтей много и в России, причем важна их концентрация в уникальных месторождениях. 60% запасов тяжелых нефтей сосредоточено в 15 месторождениях, что упрощает их освоение. В их числе Русское, Ван-Еганское, Федоровское и др. В Западной Сибири, Ново-Елоховское и Ромашкинское в Урале-Поволжье; Усинское, Ярегское, Торавейское и др. в Тимано-Печорском регионе. Основные запасы тяжелых нефтей в России сосредоточены Западной Сибири (46%) и Урало-Поволжье (26%). В 2010 г. объемы их добычи составили 39,4 млн.т., но многие из месторождений все еще осваиваются.

    Во многих месторождениях тяжелые нефти металлоносны, особенно в европейских НГП, и содержат значительные запасы редких металлов. В частности они являются потенциальным источником ванадиевого сырья, по качеству значительно превосходящего рудные источники [Суханов, Петрова 2008]. По нашим оценкам, геологические запасы пятиокиси ванадия в тяжелых нефтях только в наиболее крупных по запасам ванадия месторождениях составляют 1,3 млн.т, извлекаемые попутно с нефтью 0,2млн.т.(таб. 1).

    Ванадий извлекается в мире в широких масштабах в основном золоулавливателями на крупных ТЭЦ, работающих на мазутах, а также в коксах на НПЗ при глубокой переработке нефтей. Добавка таких коксов в доменную печь, обеспечивает морозоустойчивость рельсового проката.

    Таким образом, тяжелые нефти- комплексное углеводородное сырье, представляющее интерес не только как дополнительный источник углеводородов, но и как источник ценных металлов, а также химического сырья(сераорганических соединений и порфиринов).

    Таблица 1

    Оценка запасов ванадия в тяжелых металлоносных нефтях РФ

    Основными препятствиями к болле масштабному освоению тяжелых нефтей в России являются:

    Недостаточность фундаментальных исследований, направленных на создание эффективных технологий их освоения и комплексной переработки, адаптированных к особенностям конкретных объектов разработки;

    Необходимость модернизации и строительства новых НПЗ для глубокой переработки тяжелой и, особенно, высокосернистой тяжелой нефти.

    Низкопроницаемые продуктивные коллектора.

    Четких кондиционных параметров проницаемости для прогноза их нефтегазоотдачи быть не может, так как она зависит не только от структуры и качества матрицы коллектора(пористость, трещиноватость, гидропроводность, глинистость и пр.) и от качества сырья (плотность, вязкость), но также и от термодинамических условий в залежи (температура и давление). Для основной массы запасов нефти, располагающейся в интервале глубин 1,5-3,0 км, коллектор с проницаемостью меньше уже создает определенные сложности с извлечением их из недр, особенно значительных, если для нефти в залежи характерна высокая плотность () или вязкость(>30мПа*с). Доля запасов нефти в таких коллекторах составляет (по разным оценкам) от общемировых и 37% от их общих, учтенных в России. Особенно они распространены в Западной Сибири, причем велика их доля в месторождениях с уникальными запасами (Салымское, Приобское и др.). В прогнозных ресурсах Западной Сибири их еще больше 65%(рис. 2), что крайне неблагоприятно, поскольку именно проницаемость коллекторов определяет в основном дебиты скважин, т.е. масштабы добычи и ее себестоимость.

    Водорастворенные газы

    Водорастворенные газы имеют преимущественно метановый, метаново-азотистый или метаново- углекислый состав. Промышленное освоение водорастворенных УВ газов имеет теоретическое обоснование и положительные практические примеры. Ресурсы растворенных в воде газов и по разным оценкам колеблются от до . Обычно объмы водорастворенного газа в пластовых водах на умеренных глубинах, до 1,0-1,5 км, составляют в среднем 1-2газа на кубометр воды, на 1,5-3,0 км 3-5, но в глубоких прогибах геосинклинальных областей достигают 20-25особенно при условии низкой минерализации пластовых вод [Каплан, 1990]. Высоко газонасыщенные пластовые

    воды залегают на глубинах более 3,5-4,0 км, сопровождаются АВПД с коэффициентом аномальности вплоть до 2атм., часто фонтанируют, но быстро спонтанно дегазируются при падении давления.

    Кроме того, если газонасыщенные пластовые воды имеют повышенную минерализацию и нет условий для их сброса, поверхностного или глубинного, то возникают еще и экологические проблемы, в частности засоление почв и просадка поверхности. Цены на водорастворенный газ варьируют в пределах $75-140 за 1000, но если вода используется как гидротермальное сырье или для теплоснабжения, то опускается до $50.

    Рис. 2. Долевое распределение (%) нефти в низкопроницаемых коллекторах () в запасах и ресурсах федеральных округов.

    Промышленная ценность заключается в том, что они не содержат вредных компонентов и без очистки могут направляться непосредственно потребителю.

    Газогидраты

    Открытие крупных скоплений газогидратов в регионах вечной мерзлоты в Арктике, а также под морским дном вдоль внешних континентальных окраин Мирового океана вызывает к ним повышенный интерес в мире.

    Газогидраты- это образованные водой и газом твердые структуры, по виду напоминающие спрессованный снег. Они представляют собой кристаллическую решетку льда с молекулами газа внутри нее. Для их образования необходимы газ, вода и определенные термодинамические условия, причем не одинаковые для газовразного сотава.Молекулы газа (части) заполняют полости в каркасе молекулы воды (хозяина). Причем в 1 воды может содержаться до 150-160. На сегодняшний день выявлены три типа газогидратов (I,II и III). -Газогидраты I типа наиболее распространены: они представлены преимущественно молекулами биогенного метана. Газогидраты II и III типов могут содержать более крупные молекулы, составляющие термогенный газ.

    Исследования, проведенные учеными всего мира, предполагали, что огромные резервы залегают в донных отложениях шельфа и океана. Но выполненные исследования показали, что это не так. В обширных площадях глубоководной океанической платформе, в ее маломощных донных осадках, метана практически нет, а в зонах рифтов, где он возможен, слишком высока температура, поэтому нет условий для газогидротообразования. Насыщенные газогидратами донные отложения широко распространены преимущественно на шельфах и особенно в зонах действующих подводных грязевых вулканов или дислокаций.

    Однако даже при подтверждении наличия громадных объемов газа в газогидратах потребуется решить значительные технические и экономические проблемы, чтобы рассматривать газогидраты как жизнеспособный источник. Хотя обширные площади мировых континентальных окраин подстилаются газогидратами, концентрация их в большинстве морских скоплений очень низкая, что создает проблемы в отношении технологии добычи газа из широко разбросанных скоплений. Кроме того, в большинстве случаев морские газогидраты выявлены в неконсолидированных осадочных разрезах, обогащенных глиной, что является причиной незначительной проницаемости отложений или отсутствия ее. Большинство моделей добычи газа требуют наличия надежных путей для перемещения газа к скважине и закачки флюидов в отложения, содержащие газогидраты. Однако маловероятно, что большинство морских отложений обладают механической крепостью, способствующей образованию необходимых миграционных путей. Исследования американских ученых показали, что использование ингибиторов при добыче газа из газогидратов является технически возможным, но использование больших объемов химикалиев является дорогостоящим мероприятием, как с технической точки зрения, так и с точки зрения охраны окружающей среды.

    Как видно из вышеизложенного- нетрадиционные ресурсы углеводородов, важная часть их баланса, особенно та, которая реальна к освоению в настоящее время. Они распространены на всей территории РФ, однако, долевое соотношение их видов для различных регионов неравнозначно, что предопределяет приоритеты в их освоении для каждого региона (рис.3).

    Рис. 3. Преобладание ресурсов углеводородов в нетрадиционных объектах в регионах России

    Необходимость исследований разных видов нетрадиционных ресурсов углеводородов и целесообразность совершенствования технологий освоения отдельных их видов диктуется следующими принципиальными положениями, особенно актуальными в связи дифицитом инвестиций, исключающим широкий разворот высоко капиталоемких геологоразведочных работ в неосвоенных, труднодоступных, но перспективных регионах:

    Очевидной исчерпаемостью активных запасов углеводородов в пределах территорий доступных для экономически эффективного освоения. Степень истощения запасов нефти в России уже составляет 53% и более по ряду регионов, что влечет за собой неизбежное падение добычи;

    Неуклонным ростом себестоимости подготавливаемых к разработке запасов традиционного углеводородного сырья, в связи с экстремальными географо- климатическими и экономическими условиями производства работ на шельфе (главным образом арктическом) и больших глубинах на суше; на значительно удаленных от потребителей неосвоенных территориях, лишенных транспортной инфраструктуры;

    Наличием значительных объемов, в том числе разведанных по промышленным категориям запасов нефти и газа в нетрадиционных источниках в регионах с развитой промысловой и транспортной инфраструктурой, освоение которых тормозится не столько из-за технологических сложностей, которые вполне преодолимых, сколько из-за отсутствия в налоговом законодательстве РФ реальных рыночных механизмов для экономически эффективной их подготовки и разработки.

    Подготовка и освоение нетрадиционных источников углеводородного сырья, частично перекроет формирующийся дефицит в его запасах в РФ. Для этого необходимы весьма умеренные ассигнования, которые позволяют удержать объемы добычи углеводородов в первые годы посткризисного периода, направленные в основном на НИР и НИОКР, а именно:

    Провести региональную ревизию ресурсов, запасов и качества всех видов нетрадиционного углеводородного сырья на новом информационном уровне, с учетом прогресса, достигнутого в технологиях их добычи, а также экономических, социальных и экологических последствий их освоения. Их состояние должно быть четко отражено в государственных балансах;

    Выполнить фундаментальные исследования для создания эффективных технологий разработки и комплексной переработки нетрадиционных видов углеводородного сырья, адаптированных к конкретным отечественным объектам их первоочередного освоения;

    Усовершенствовать систему налогообложения на добычу нетрадиционных видов углеводородного сырья за счет их дифференциации в соответствии с качеством и спецификой освоения отдельных их видов.

    Заключение

    Состояние изученности нетрадиционных видов сырья и их освоенности в мире все еще низкое, но вместе с исчерпанием традиционных резервов страны с дефицитом УВ все чаще обращаются к их нетрадиционным источникам.

    Большая часть мероприятий так же, как и предложений по стимулированию добычи, направлена исключительно на группу трудноизвлекаемых нефтей и газов. Собственно же нетрадиционные ресурсы УВ находятся за пределами внимания как нефтегазовых компаний, так и государственных органов управления недропользованием.

    Таким образом, применительно к современной ситуации основные виды нетрадиционных ресурсов УВ можно разбить на группу подготовленных для промышленного (или опытно-промышленного) освоения, группу, требующую изучения, оценки и учета на балансе, а также для которой необходима разработка технологий с вовлечением в освоение в долгосрочной перспективе, и группу проблемных и гипотетических объектов.

    По возможности вовлечения в освоения нетрадиционные ресурсы УВ можно разделить на три неравнозначные группы. Практическую значимость в качестве УВ сырья среди нетрадиционных источников УВ уже в настоящее время имеют трудноизвлекаемые (тяжелые высоковязкие) нефти, битумы и нефтяные пески, а также нефти и газы в низкопроницаемых коллекторах. В среднесрочной перспективе к этой группе можно будет и в России относить газы в сланцах и газы в угленосных отложениях (сорбированные и свободные). Водорастворенные газы и газогидраты вряд ли станут предметом целенаправленной оценки и освоения в ближайшие 20-30 лет.

    В целом нетрадиционные ресурсы УВ- это существенный резерв и для восполнения сырьевой базы нефти РФ, причем не только в «старых» выработанных НГБ, но также и в Западной и Восточной Сибири, где они составляют более половины прогнозируемых ресурсов углеводородов.

    Список использованной литературы:

    1 Каплан Е.М. Ресурсы нетрадиционного газового сырья и проблемы его освоения-Л.:ВНИГРИ, 1990-стр.138-144.

    2 Анфилатова Э.А. Статья// Аналитический обзор современных зарубежных данных по проблеме распространения газогидратов в акваториях мира.(ВНИГРИ)2009

    3 Ушивцева Л.Ф. статья// Нетрадиционные источники углеводородного и гидротермального сырья.

    4 Нетрадиционные источники углеводородного сырья/ под ред. ЯкуцениВ.П. 1989

    5 Нетрадиционные ресурсы УВ- резерв для восполнения сырьевой базы нефти и газа РФ./Якуцени В.П., Петрова Ю.Э., Суханов А.А.(ВНИГРИ) .2009

    6 О.М. Прищепа статья/ Ресурсный потенциал и направления изучения нетрадиционных источников углеводородного сырья РФ (ФГУП «ВНИГРИ»)2012

    Энергетический кризис способствовал повышению интереса к новым видам энергоресурсов, которые получили название нетрадиционных или альтернативных. Доля их в структуре мирового потребления первичных энергоресурсов заметно растет. К нетрадиционным источникам энергии относят энергию Солнца, геотермальную и термоядерную энергию. Особые надежды возлагают на водород, так как он является наиболее перспективным энергоносителем. Однако его промышленное получение обходится пока очень дорого.

    Все более глубокий интерес в современном мире проявляется к практическому применению геотермальной энергии, использованию тепла Земли. Она находит двоякое применение. Во-первых - подача горячих для обогрева зданий и теплиц. В наши дни наибольшее значение этот путь имеет для Исландии. Для этой цели в столице государства Рейкьявике начиная с 30-х годов создана система трубопроводов, по которым вода подается потребителям. Благодаря геотермальной энергии, которая идет на отопление теплиц, полностью обеспечивает себя яблоками, помидорами и даже дынями и бананами. Во-вторых, применять геотермальную энергию можно путем строительства геотермальных станций. Самые крупные из них построены в , на , в , Италии, Японии, России ().

    Трудно представить себе жизнь человечества без Солнца. Хорошо известно, что мира в значительной степени базируется на запасенной в процессе фотосинтеза солнечной энергии, в топливе. Однако создание солнечных электростанций позволило человечеству использовать энергию в гораздо большем объеме. Наиболее преуспели в гелиоэнергетике (от греч. helios - солнце) США, Италия, . Построена солнечная электростанция в ().

    С давних пор служила человечеству энергия ветра. Примитивные ветряные двигатели применялись еще 2 тыс. лет назад. Появление интереса человека к энергии ветра сегодня объясняется энергетическими затруднениями, возникшими в последние годы. Небольшие ветровые электростанции работают почти во всех . Конструированием и промышленным выпуском современных ветряных установок занимаются сейчас Франция, США, . Очень важной проблемой в использовании энергии ветра является малое содержание энергии в единице объема, непостоянство силы и направления ветра, поэтому перспективно использовать ветер в странах, находящихся в районах постоянных направлений ветра.

    Использование энергии волн находится пока еще в основном на стадии эксперимента.

    Энергия приливов успешно используется во Франции, США, России и . Здесь построены приливные электростанции.

    К нетрадиционным источникам энергии можно отнести также получение синтетического горючего на основе угля, сланцев, нефтеносных песков.

    В настоящее время потребление нефти таково, что никакой альтернативный ей источник энергии не может заменить собой потребности в нефти. При этом запасы традиционной легкодоступной нефти неуклонно снижаются. Новых открытий крупных месторождений нефти не было с 70-х годов прошлого века, несмотря на все старания нефтяных компаний.

    Возобновляемые источники энергии, такие как энергия Солнца или энергия ветра не оправдывают ожиданий своих последователей. Слишком уж дорого обходится их внедрение, да и эффективность их применения вызывает много вопросов. Как показывает практика, возможности этих ресурсов (технологий) по выработке энергии довольно ограничены. Несмотря на отдельные довольно-таки успешные примеры внедрения альтернативной (возобновляемой) энергетики, ее широкомасштабное использование малоперспективно.

    Атомная промышленность самостоятельно также не может покрыть необходимые потребности. Максимум на что может хватить запасов урана при текущих технологиях – это 10 лет. К тому же в обществе после недавних событий на Фукусиме укрепилось негативное отношение к этому виду энергии. Никто не хочет иметь у себя в огороде такой потенциально опасный объект как АЭС.

    Чтобы удовлетворить непрерывно растущие потребности общества в энергии, нефтедобывающая отрасль все больше переключает свое внимание на дорогостоящие нетрадиционные и труднодоступные источники углеводородов.

    К таким источникам относятся:

    • Нефтяные пески Канады;
    • Тяжелая/высоковязкая/битумная нефть других регионов мира;
    • Сланцевая нефть;
    • Технологии, основанные на процессе Фишера-Тропша:
      • газ-в-жидкость / gas-to-liquids (GTL);
      • уголь-в-жидкость / coal-to-liquids (CTL);
      • биомасса-в-жидкость / biomass to liquids (BTL);
    • Добыча нефти на глубоководном шельфе и шельфе арктических морей

    Общая характерная черта всех этих источников углеводородов – высокая себестоимость конечной продукции. Но это относительно небольшая плата за то, чтобы получить привычную и подходящую для современной инфраструктуры форму энергии (жидкие углеводороды).

    Краткий обзор нетрадиционных источников углеводородов

    Нефтяные пески успешно разрабатывают в Канаде c 60-х годов прошлого века. Сегодня примерно половина нефти добываемой в этой стране приходиться на нефтяные пески. Под нефтяным песком, на самом деле, подразумевается смесь песка, воды, глины, тяжелой нефти и природного битума. Выделяют три нефтяных региона в Канаде со значительными запасами тяжелой нефти и природного битума. Это Athabasca, о котором многие наверняка слышали, Peace River и Cold Lake. Все они находятся в провинции Альберта.

    Для добычи нефти из нефтяных песков применяют два принципиально различных метода:

    1) Открытым карьерным способом и 2) Непосредственно из пласта.

    Карьерный способ добычи подходит для неглубоких залежей (глубиной до 75 м) и залежей, выходящих на поверхность. Примечательно, что в Канаде все залежи подходящие для карьерного способа добычи, расположены в районе Athabasca.

    Карьерный способ добычи подразумевает, что нефтяной песок, попросту говоря, грузиться на самосвалы и перевозится на установку переработки, где его промывают горячей водой и таким образом отделяют нефть от всего прочего материала. Требуется добыть примерно 2 тонны нефтяного песка, чтобы получить 1 баррель нефти. Если это кажется вам довольно трудозатратным способом получить 1 баррель нефти, то вы правы. Зато коэффициент нефтеотдачи при этом способе добычи очень высок и составляет 75%-95%.

    Рис. 1 Карьерный способ добычи нефтяного песка

    Для извлечения тяжелой нефти непосредственно из пласта используют, как правило, тепловые способы добычи, такие как . Существуют также и «холодные» методы добычи, предполагающие закачку в пласт растворителей (например, метод VAPEX или ). Способы добычи тяжелой нефти непосредственно из пласта менее эффективны в плане нефтеотдачи по сравнению с карьерным способом. В то же время эти способы имеют некоторый потенциал к снижению себестоимости получаемой нефти за счет совершенствования технологий ее добычи.

    Тяжелая/высоковязкая/битумная нефть привлекает все большее внимание нефтяной промышленности. Поскольку основные «сливки» в мировой нефтедобыче уже сняты, нефтяные компании просто вынуждены переключаться на менее привлекательные месторождения тяжелой нефти.

    Именно в тяжелой нефти сосредоточены основные мировые запасы углеводородов. Вслед за Канадой, поставившей на свой баланс запасы тяжелой/битумной нефти, то же самое сделала и Венесуэла, имеющая огромные запасы этой нефти в поясе реки Ориноко. Этот «маневр» вывел Венесуэлу на первое место в мире по запасам нефти. Значительные , а также во многих других нефтедобывающих странах.

    Огромные запасы тяжелой нефти и природных битумов требуют разработки инновационных технологий добычи, транспорта и переработки сырья. В настоящее время операционные затраты по добыче тяжелой нефти и природных битумов могут в 3-4 раза превосходить затраты на добычу легкой нефти. Переработка тяжелой высоковязкой нефти также более энергоемка и, как следствие, во многих случаях низкорентабельна и даже убыточна.

    В России различные способы добычи тяжелой нефти испытывались на хорошо известном Ярегском месторождении высоковязкой нефти расположенном в Республике Коми. Продуктивный пласт этого месторождения, залегающий на глубине ~200 м, содержит нефть плотностью 933 кг/м3 и вязкостью 12000-16000 мПа·с. В настоящее время на месторождении осуществляется термошахтный способ добычи, зарекомендовавший себя как достаточно эффективный и экономически оправданный.

    На Ашальчинском месторождении сверхвязкой нефти, расположенном в Татарстане, реализуется проект по опытно-промышленному испытанию технологии парогравитационного воздействия. Эта технология, правда без особого успеха, испытывалась также на Мордово-Кармальском месторождении.

    Результаты разработки месторождений тяжелой высоковязкой нефти в России пока не внушают особого оптимизма. Требуется дальнейшее совершенствование технологий и оборудования для повышения эффективности добычи. В то же время потенциал к снижению себестоимости добычи тяжелой нефти есть, и многие компании готовы принимать в ее добыче активное участие.

    Сланцевая нефть - «модная» тема в последнее время. Сегодня целый ряд стран проявляют повышенный интерес к добыче сланцевой нефти. В США, где добыча сланцевой нефти уже идет, с ней связывают значительные надежды по снижению зависимости от импорта этого вида энергоресурса. В последние годы основной прирост добычи американской сырой нефти происходит преимущественно за счет сланцевых месторождений Bakken в Северной Дакоте и Eagle Ford в Техасе.

    Развитие добычи сланцевой нефти – прямое следствие той «революции», которая случилась в США в добыче сланцевого газа. Поскольку цены на газ обвалились в результате резкого роста объемов его добычи, компании стали переключаться с добычи газа на добычу сланцевой нефти. Тем более что технологии их добычи ничем особенным не отличаются. Для этого, как известно, бурят горизонтальные скважины с последующими множественными гидроразрывами нефтесодержащих пород. Постольку поскольку дебит таких скважин очень быстро падает, для поддержания объемов добычи требуется бурить значительное количество скважин по очень плотной сетке. Поэтому затраты на добычу сланцевой нефти неизбежно оказываются выше, чем затраты на добычу нефти традиционных месторождений.

    Пока высоки проекты по добыче сланцевой нефти, несмотря на высокие издержки, остаются привлекательными. За пределами США наиболее перспективными считаются залежи сланцевой нефти Vaca Muerta в Аргентине и Баженовская свита в России.

    Процесс Фишера-Тропша был разработан в 20-х годах прошлого века немецкими учеными Францем Фишером и Гансом Тропшем. Заключается он в искусственном соединении водорода с углеродом при определенной температуре и давлении в присутствии катализаторов. Получаемая таким образом смесь углеводородов сильно напоминает нефть и обычно называется синтез-нефть .

    Рис. 2 Производство синтетического топлива на основе процесса Фишера-Тропша

    CTL (Coal-to-liquids) - суть технологии состоит в том, что уголь без доступа воздуха и при высокой температуре разлагается на угарный газ и водород. Далее в присутствии катализатора из этих двух газов синтезируется смесь различных углеводородов. Затем эта синтезированная нефть также как и обычная проходит разделение на фракции и дальнейшую переработку. В качестве катализаторов используется железо или кобальт.

    Во время Второй Мировой войны немецкая промышленность активно использовала технологию Coal-to-liquids для получения синтетического топлива. Но поскольку процесс этот экономически нерентабелен и к тому же экологически вреден, то после окончания войны выработка синтетического топлива сошла на нет. Немецкий опыт впоследствии был использован всего дважды - один завод был построен в ЮАР и еще один в Тринидаде.

    GTL (Gas-to-liquids) - процесс производства жидких синтетических углеводородов из газа (природного газа, попутного нефтяного газа). Cинтез-нефть, получаемая в результате GTL процесса, не уступает, а по отдельным характеристикам превосходит высококачественную легкую нефть. Многие мировые производители используют синтез-нефть для улучшения характеристик тяжелой нефти, путем их смешивания.

    Несмотря на то, что интерес к технологиям преобразования сначала угля, потом газа в синтетические нефтепродукты не угасает с начала 20 века, в настоящее время в мире функционирует всего четыре крупнотоннажных GTL завода - Mossel Bay (ЮАР), Bintulu (Малайзия), Oryx (Катар) и Pearl (Катар).

    BTL (Biomass-to-liquids) - суть технологии та же что и уголь-в-жидкость. Единственное существенное отличие в том, что исходным материалом является не уголь, а растительный материал. Масштабное использование этой технологии затруднено в связи с отсутствием значительного количества исходного материала.

    Недостатками проектов по производству синтетических углеводородов на основе процесса Фишера-Тропша являются: высокая капиталоемкость проектов, значительные выбросы углекислого газа, высокое потребление воды. В результате проекты либо совсем не окупаются, либо находятся на грани рентабельности. Интерес к таким проектам повышается в периоды высоких цен на нефть и быстро угасает при снижении цен.

    Добыча нефти на глубоководном шельфе требует от компаний высоких капитальных затрат, владения соответствующими технологиями и несет с собой повышенные риски для компании-оператора. Вспомнить хотя бы последнюю аварию на Deepwater Horizon в Мексиканском заливе. Компании BP только чудом удалось избежать банкротства. Чтобы покрыть все затраты и сопутствующие выплаты, компании пришлось продать чуть ли не половину своих активов. Ликвидация аварии и ее последствий, а также компенсационные выплаты обошлись BP в кругленькую сумму порядка 30 млрд. долларов.

    Не каждая компания готова брать на себя такие . Поэтому проекты добычи нефти на глубоководном шельфе осуществляются, как правило, консорциумом компаний.

    Шельфовые проекты успешно осуществляются в Мексиканском заливе, Северном море, на шельфе Норвегии, Бразилии и других стран. В России основные надежды связывают с шельфом арктических и дальневосточных морей.

    Шельф арктических морей хотя и малоизучен, но обладает значительным потенциалом. Существующие геологические данные позволяют прогнозировать значительные запасы углеводородов в этом районе. Но и риски велики. Практикам нефтедобычи хорошо известно, что окончательный вердикт по наличию (или отсутствию) коммерческих запасов нефти можно вынести только по результатам бурения скважин. А их в Арктике пока что практически нет. Метод аналогий, который применяют в таких случаях для оценки запасов региона, может дать неверное представление о реальных запасах. Не каждая перспективная геологическая структура содержит нефть. Тем не менее, шансы обнаружить крупные месторождения нефти оцениваются экспертами как высокие.

    К поиску и разработке залежей нефти в Арктике предъявляются чрезвычайно высокие требования по обеспечению охраны окружающей среды. Дополнительными препятствиями являются суровый климат, удаленность от существующей инфраструктуры и необходимость учета ледовой обстановки.

    И в заключение еще несколько соображений

    Все перечисленные источники углеводородов и способы их добычи не новы, они достаточно давно известны. Все они в той или иной степени уже задействованы нефтяной промышленностью. Сдерживает их развитие уже упомянутая высокая себестоимость конечной продукции и такой интересный показатель как EROI.

    EROI (возврат энергии на инвестиции) – это отношение количества энергии, содержащейся в энергоносителе к энергии, затраченной на получение этого энергоносителя. Другими словами - это отношение энергии, которая содержит в себе полученная нефть к энергии, потраченной на бурение, добычу, транспортировку, переработку, хранение и доставку потребителю этой нефти.

    Если обычная легкая нефть в настоящее время имеет EROI порядка 15:1, то у нефти, получаемой из нефтяного песка, EROI примерно 5:1, а у сланцевой нефти примерно 2:1.

    Процесс постепенного замещения легкой нефти на более дорогостоящие источники углеводородов уже идет, а усредненный показатель EROI неуклонно движется к паритетному значению 1:1. И вполне вероятно, что в будущем этот показатель будет не в нашу пользу. Если до сих пор энергия нам доставалась можно сказать бесплатно , то в не таком уж далеком будущем нам, вероятно, придется платить за то, чтобы получить энергию в привычной и удобной жидкой форме, подходящей для наших технологий и существующей инфраструктуры.

    Известны источники альтернативной энергии вызванные ветром, солнцем, биотопливом, гидроэлектростанциями, станциями приливов и волн, но мать-природа обеспечивает бесконечные источники энергии нетрадиционные помимо тех, которые мы используем сегодня.

    Много чистых и зеленых ресурсов и различные вокруг нас в мире природы и ученые только начали отвечать на вопрос о том, как использовать её.

    Вот источники энергии нетрадиционные, о которых вы, вероятно, никогда не слышали:

    Осмотическая или энергия соленой воды

    Осмотическая или энергия соленой воды один из наиболее перспективных новых источников возобновляемой энергии, еще не используемой в полной мере. Также, как необходимо огромное количество мощности для опреснения воды, взаимодействие создается, когда происходит обратное и соленая вода добавляется к пресной воде. Через процесс, называемый реверсивный электродиализ электростанции могут захватить эту силу взаимодействия в лиманах во всем мире.

    Построена опытная электростанция в Норвегии которая использует разность концентрации соли в пресной и соленой воде.

    Из-за явления осмоса, вода устремляется в ту часть где концентрация соли выше.

    Биотехнология как фотосинтез

    Этот нетрадиционный источник энергии представляет революционный процесс генерирующий на углеводородной основе топливо путем объединения солоноватой воды, питательных веществ, фотосинтетических организмов, двуокиси углерода и солнечного света. Эта биотехнология представляет фотосинтез который производит топливо непосредственно в виде этанола или углеводородов. По существу, метод использует для производства готового к использованию топлива.

    Явление пьезоэлектричества для получения ресурсов

    Человеческое население мира превысило колоссальные 7 миллиардов. Кинетическая составляющая человеческого движения может стать источником реальной силы. Пьезоэлектричество представляет способность некоторых материалов для создания электрического поля в ответ на приложенное механическое воздействие. Размещая плитки из пьезоэлектрического материала вдоль пешеходных троп или даже на подошвы обуви, электричество может вырабатываться с каждым шагом. Заставив людей ходить получится микроэлектростанция, выдающая определенные ресурсы.

    Преобразование тепловой энергии океана

    Преобразование тепловой энергии океана представляет гидроэнергетику с преобразованием системы, которая использует разницу температур воды на разных глубинах для питания теплового двигателя. Эти ресурсы могут быть использованы путем создания платформ или на барже, воспользовавшись тепловыми слоями, найденными между глубинами океана.

    Человеческие сточные воды

    Даже сточные воды могут использоваться для создания электричества или топлива. Разрабатываются экспериментальные планы по оснащению общественных автобусов в Осло (Норвегия) топливом благодаря сточным водам. Электричество также может быть создано из сточных вод с использованием , которые используют био электрохимические системы и используют бактериальные взаимодействия, встречающиеся в природе. Конечно сточные воды, также могут быть использованы в качестве удобрения.

    Нагревание воды

    Новый тип геотермальной энергии, которая образуется путем протекания холодной соленой воды в скале, которая нагревается от мантии Земли и распада радиоактивных элементов в земной коре. Когда вода нагревается, созданное тепло может быть преобразовано в электричество паровой турбины. Преимуществом этого типа ресурсов является то, что горячую воду можно легко контролировать, и это может обеспечить ресурсами круглосуточно.

    Испарительная энергия

    Изучив рост растений ученые изобрели синтетический «лист», который может собирать электричество от испарения воды. Пузырьки воздуха могут быть накачаны в «листья», производство электросилы порождает разницу в электрических свойствах между водой и воздухом. Это исследование может открыть более грандиозные источники энергии нетрадиционные, как созданные от испарения.

    Вихревая индуцированная вибрация форма возобновляемой энергии, которая черпает мощность через медленные течения. Данный принцип вдохновлен движением рыб. Движение может быть использовано когда вода течет мимо сети стержней. Вихри или завихрения, чередуются в необъяснимом порядке, толкают и вытягивают объекты вверх или вниз из стороны в сторону, чтобы создать механическую силу. Принцип основан так, как будто что то скользит между вихревыми датчиками создавая индуцированную вибрацию.

    Гелий-3 -нерадиоактивный изотоп, который имеет огромный потенциал для создания относительно чистой силы за счет ядерного синтеза.

    1 тонна гелия 3 (гелион -два протона и один нейтрон) содержит ресурсов как 20 млн тонн нефти.

    Единственное это то, что это редкий на земле, но обильный на Луне радиоизотоп Гелий-3. Например Российская Ракетно-Космическая Корпорация (РКК) объявила, что она считает лунный гелий-3 как потенциальный экономический ресурс будущего.

    На основе использования космической солнечной энергии

    Так как энергия солнца имеется в космосе 24-часа цикл день и ночь, все сезоны рассматриваются предложения для размещения солнечных панелей на орбите и направление пучка мощности вниз для использования на земле. Технологический прорыв здесь включает передачу беспроводной мощности, которая может быть выполнена на микроволновой частоте.

    НЕТРАДИЦИОННЫЕ ГАЗОВЫЕ РЕСУРСЫ (ГИДРАТНЫЕ, УГОЛЬНЫЕ И СЛАНЦЕВЫЕ ГАЗЫ) -МИРОВОЙ ОПЫТ И ПЕРСПЕКТИВЫ ОСВОЕНИЯ В РОССИИ

    Е.В. Перлова (ООО «Газпром ВНИИГАЗ»)

    До сих пор нет единого мнения, что понимать под термином «нетрадиционные газовые ресурсы». В 2003 г. Рабочий комитет по поискам и разведке природного газа Международного газового союза предложил геологические, технологические и экономические критерии, по которым газовые залежи можно отнести к тому или иному нетрадиционному типу .

    Так, по геологическим критериям к собственно нетрадиционным газовым скоплениям следует относить газосодержащие объекты, где газ находится не в газообразной, а в сорбированной, водорастворенной и гидратной формах. Существует также категория псевдо-нетрадиционных газовых залежей, где газ находится в свободной (газообразной) форме в низкопроницаемых или глубокозале-гающих коллекторах. По технологическим критериям залежь можно рассматривать как нетрадиционную, если технология промышленной добычи газа не определена. По экономическим критериям для отнесения газовых залежей к нетрадиционным достаточно, чтобы стоимость добычи газа (включая транспортные издержки) превышала его текущую рыночную цену.

    В целом актуальность изучения нетрадиционных источников газа обусловлена несколькими причинами.

    Во-первых, нетрадиционные источники газа имеют широкое распространение в природе и огромный ресурсный потенциал (рис. 1). Их конкурентоспособность может приблизиться к традиционным скоплениям вследствие истощения «дешевых» газовых ресурсов и ухудшения их структуры, поскольку в разработку вовлекаются все более «мелкие» месторождения, увеличивается доля трудноизвлекаемых запасов и ресурсов и т.д.

    Газ угольных пластов 200-250 трлн м3 (6%)

    Газ сланцев 380-420 трлн м3 (11 %)

    Газ низкопроницаемых р коллекторов

    ^ 180-220 трлн м3 (5 %)

    Газ глубоких горизонтов 200-350 трлн м3 (6 %)

    Рис. 1. Мировые ресурсы газа нетрадиционных источников (по оценкам ООО «Газпром ВНИИГАЗ», )

    Во-вторых, изучение нетрадиционных источников газа важно при планировании внешнеэкономической деятельности, поскольку позволяет своевременно реагировать на изменения мирового экспортно-импортного газового баланса. Так, в настоящий момент в США более 50 % собственной добычи газа приходится на нетрадиционные источники, и эта доля продолжает увеличиваться. В связи с успехами освоения нетрадиционных газовых ресурсов в США многие страны, являющиеся традиционными рынками для российского газа (например, страны Западной Европы), проявляют большую заинтересованность в использовании американского опыта для разработки собственных нетрадиционных газовых ресурсов.

    Соотношение геологических (проницаемость, доля свободного газа, глубина залегания), технологических (плотность ресурсов, дебит газа, давление на устье скважины), а также экономических (расстояние до потребителя, цена на газ и др.) параметров определяет перспективность разработки нетрадиционных газовых скоплений. На современном этапе исследований это, скорее, условный критерий, который будет меняться по мере поступления новых данных, разработки новых технологий и т.д.

    В настоящее время к перспективным собственно нетрадиционным источникам газа можно отнести природные газогидраты, угольные и сланцевые газы .

    Ресурсы газа в газовых гидратах и перспективы их освоения в России

    Природные газовые гидраты (ГГ) являются клатратными соединениями молекул воды и газа-гидратообразователя. Перспективы освоения ГГ обусловлены их широким распространением в природе - на континентах в областях распространения многолетнемерзлых пород (низкие температуры разреза), под дном морей и океанов (высокие давления). По современным оценкам, мировые ресурсы метана в гидратном состоянии в земной коре могут составлять 2500-21000 трлн м3.

    В мире среди немногочисленных газогидратных исследований, в которых отрабатываются технологии добычи гидратного газа, наиболее представительными являются работы на месторождении Маллик в Канаде (для континентальных газогидратов) и исследования в районе глубоководного желоба Нанкай у берегов Японии (для субаквальных газогидратов).

    На месторождении Маллик в рамках многолетней исследовательской программы осуществлен полный комплекс полевых скважинных исследований, проведены лабораторные анализы гидратосодержащих кернов. Успешно реализованы промысловые эксперименты по добыче газа из гидратонасыщенных интервалов. Геологические ресурсы газа в гидратном состоянии здесь оцениваются от 8,8 до 10,2 трлн м3, их плотность составляет 4,15 млрд м3/км2 .

    В районе Нанкайского желоба у берегов Японии уже более 10 лет ведутся разведочные работы. Наличие газовых гидратов в разрезе подтверждено извлеченным гидратосодержащим керном. В целом по шельфу Японского моря ресурсы газа в гидратном состоянии могут составлять от 4 до 20 трлн м3 . Плотность ресурсов оценивается в 0,8 трлн м3 газа на 1 км2 площади. Начало промышленной разработки месторождения Нанкай запланировано на 2017 г.

    Россия, значительная часть территории которой находится в зоне вечной мерзлоты, обладает благоприятными условиями для формирования и сохранения значительных ресурсов газогидратов.

    Специализированных газогидратных исследований на природных объектах в России пока не проводилось. Тем не менее, полученный к настоящему времени фактический материал позволяет оценить прогнозные ресурсы гидратного газа, а также наметить первоочередные полигоны для проведения специализированных геолого-разведочных работ (рис. 2).

    В континентальных условиях на территории России ресурсы газогидратного газа, по нашим оценкам, составляют около 400 трлн м3 и сосредоточены в областях распространения многолетнемерзлых пород в пределах нефтегазоносных провинций (НГП) Восточной Сибири, Тимано-Печорской и Западно-Сибирской НГП .

    Западно-Сибирская НГП является наиболее перспективной для освоения континентальных ГГ. Первоочередными объектами геолого-разведочных работ являются ареалы месторождений севера Надым-Пур-Тазовского региона, где общие ресурсы гидратного газа оцениваются в 110 трлн м3 (см. рис. 2). По совокупности геолого-технологических и экономических критериев первоочередным опытно-промышленным полигоном может служить территория Ямбургского НГКМ.

    Субаквальные газогидраты на территории окраинных и внутренних морей России обладают значительным и более «надежным» ресурсным потенциалом из-за большей достоверности параметров, необходимых для оценки ресурсов (см. рис. 2).

    Моря арктического и дальневосточного секторов России существенно различаются по перспективам вовлечения в разработку субаквальных газогидратных залежей. Так, в арктическом секторе РФ для Чукотского, Восточно-Сибирского морей и моря Лаптевых характерны низкие оценки гидра-тоносности вследствие их мелководности. Практически все ресурсы гидратного газа здесь связаны с областями начала континентального склона Северного Ледовитого океана. Прогнозные ресурсы

    Зоны возможного

    гидратообразования; О - первоочередные объекты для постановки ГРР на нетрадиционные источники газа

    I - основные угленосные провинции;

    Основные сланценосные провинции:

    1 - Прибалтийская; 2 - Волжско-Печорская; 3 - Прибайкальская; 4 - Забайкальская; 5 - Оленёкская; /-ч, - ЕСГ

    Рис. 2. Распространение и потенциальные ресурсы гидратных, угольных и сланцевых газов на территории России (по оценкам ООО «Газпром ВНИИГАЗ», )

    ПРОБЛЕМЫ РЕСУРСНОГО ОБЕСПЕЧЕНИЯ ГАЗОДОБЫВАЮЩИХ РАЙОНОВ РОССИИ ДО 2030 Г.

    гидратного газа в Баренцевом и Карском морях значительны, однако крайне неравномерно распределены по площади и сосредоточены в нескольких глубоководных впадинах (см. рис. 2).

    Моря дальневосточного сектора - Берингово и Охотское - обладают значительными перспективами гидратоносности. Зона стабильности гидратов метана достигает внушительных мощностей, простираясь на обширные территории этих акваторий. Прогнозные ресурсы гидратного газа Берингова моря могут достигать 63 трлн м3 и приурочены к его юго-западной части.

    В Охотском море прогнозные ресурсы гидратного газа существенно меньше - около 17 трлн м3 -однако более «надежны» в силу лучшей изученности акватории. Это позволяет наметить в западной части Охотского моря, в районе впадины Дерюгина, первоочередной полигон для проведения опытно-методических и геолого-разведочных работ на субакальные газогидраты. Следует также отметить, что этот регион является наиболее удаленным от традиционных источников газа.

    Среди южных морей наибольшими перспективами будущего освоения природных газогидра-тов обладает Черное море из-за значительных ресурсов гидратного газа, расположенных вблизи экспортных транспортных коридоров и потенциальных потребителей УВ. По оценкам болгарских исследователей, ресурсы гидратного газа в Черном море могут достигать 49 трлн м3 .

    Таким образом, рассматривая перспективы освоения ресурсов гидратного газа в России, необходимо учитывать следующее:

    1. В настоящее время оценочная себестоимость добычи гидратного газа значительно превышает аналогичный показатель для традиционных газовых месторождений. Промышленное освоение га-зогидратных залежей в России станет рентабельным, когда прогресс в технологиях газодобычи обеспечит экономическую целесообразность их разработки (ориентировочно через 15-20 лет).

    2. Наибольшими перспективами промышленного освоения обладают континентальные газогид-ратные скопления, приуроченные к районам с налаженной инфраструктурой добычи и транспортировки газа.

    3. Первоочередными объектами для постановки геолого-разведочных работ и опытно-экспериментального бурения на природные газовые гидраты в России являются: территория Ямбургского НГКМ и западная часть Охотского моря в районе Сахалинского шельфа (впадина Дерюгина).

    Ресурсы угольного метана и перспективы их освоения в России

    Большинство промышленно угленосных бассейнов мира, в том числе в России, фактически являются углегазоносными. В угленосных толщах могут находиться значительные газовые скопления в свободной форме - так называемые «сладкие пятна». Однако, по существующим определениям, на месторождении угольного газа (УГ) большая его часть (до 90 %) должна находиться в трудно-извлекаемой форме твердого раствора с углем, иначе месторождение не относится к нетрадиционным, а является традиционным газовым скоплением во вмещающем угленосном массиве. Поэтому, несмотря на значительные прогнозные ресурсы угольного метана (до 250 трлн м3), его промышленная добыча представляет собой проблему, пока трудно разрешимую с технологической и экономической точек зрения.

    Тем не менее, угольный метан во многих странах мира, в том числе и в России, рассматривается в качестве важной составляющей топливно-энергетической базы. Мировой опыт подтверждает возможность и экономическую эффективность широкомасштабной добычи метана из угольных пластов, годовой объем которой в 2005 г. составил: в США - 52 млрд м3, в Канаде - 2,4 млрд м3, в Австралии - 0,7 млрд м3, в Китае -1,1 млрд м3. В ряде стран (Италия, Германия, ЮАР, Индия, Венесуэла, Аргентина и др.) существуют программы разработки технологий добычи метана из угольных пластов. Однако большая часть метана, добываемого в США из угольных пластов (60-65 %), приходится на традиционные газосодержащие месторождения, в залежах которых газ находится в свободной форме в угленосных формациях бассейна Сан-Хуан .

    Лидирующее положение в мире по уровню промышленного освоения метана угольных пластов занимают США. Объем добываемого угольного метана в 2005 г. превысил 50 млрд м3, что составляет 9 % от всей годовой добычи природного газа в США. Угольный газ добывается в 40000 скважинах, пробуренных в 20 угольных бассейнах.

    Однако угольные бассейны США в настоящее время являются практически единственным примером использования метана угольных пластов в промышленных масштабах. Такая ситуация связана с тем, что добыча и подготовка к магистральному транспорту УГ требуют специального комплекса геолого-промысловых исследований, которые коренным образом отличаются от типовых изысканий на углеразведочных скважинах. Это требует изменения конструкций скважин, системы их обустройства, использования другой измерительной аппаратуры, средств герметизации и т.д. и в конечном счете значительных капиталовложений в упомянутые технологии.

    Крупные угольные бассейны России соответствуют (а часто и значительно превосходят) по своим характеристикам мировые критерии перспективности добычи угольного метана: метанонос-ность углей, степень их метаморфизма, проницаемость, петрографический состав углей и т.д. . Прогнозные ресурсы угольного газа оцениваются в 50 трлн м3 (см. рис. 2).

    С 2003 г. ОАО «Газпром» приступило к реализации проекта по оценке возможности промышленной добычи метана из угольных пластов в Кузбассе . ОАО «Газпром промгаз» обустроило на Талдинской площади экспериментальный полигон, на котором отрабатываются технологии промышленной добычи и использования УГ. Работы выполняются поэтапно с целью снижения геологических и технологических рисков, которыми характеризуются такого рода проекты на ранней стадии их реализации.

    С февраля 2010 г. Талдинская площадь Кузбасса официально признана метаноугольным месторождением (ООО «Газпром добыча Кузнецк», г. Кемерово, при участии ОАО «Газпром промгаз»).

    Освоение ресурсов угольного метана Кузбасса в будущем может расширить ресурсную базу углеводородного сырья ОАО «Газпром», обеспечив широкомасштабную газификацию Кемеровской области и регионов юга Западной Сибири. Опыт, полученный ОАО «Г азпром промгаз» в Кузбассе, является для России уникальным и, по сути, пока единственным опытом прикладных исследований нетрадиционных газовых ресурсов с перспективой их промышленной добычи.

    Рассматривая перспективы промышленного освоения ресурсов УГ в России, отметим следующее:

    1. Первоочередным объектом опытно-промышленной добычи является Талдинская площадь Кузнецкого угольного бассейна (см. рис. 2).

    2. Промышленная добыча угольного газа в России длительное время будет оставаться нерентабельной. Попутная добыча шахтного метана для нужд местного газоснабжения уже в настоящее время имеет хорошиме перспективы.

    3. Исходя из мирового опыта освоения метана угольных пластов, актуальными для России в настоящее время являются поисково-оценочные работы на угольный метан в перспективных районах различных угольных бассейнов с учетом методических наработок, полученных в Кузнецком угольном бассейне.

    Ресурсы сланцевого газа и перспективы их освоения в России

    Сланец - осадочная порода, состоящая из консолидированных глинистых частиц с крайне низкой газопроницаемостью. Во многих нефтегазовых месторождениях сланцевые формации являются покрышками. При этом в ряде бассейнов пласты сланцев (мощностью иногда до сотни метров) являются источником природного газа. Газ в сланцевых формациях может содержаться благодаря наличию локальной трещиноватой макропористости, в пределах микропор или находиться в адсорбированном состоянии. Газ в сланцах содержится в низких концентрациях и его можно извлечь путем вскрытия и дренажа достаточно больших объемов газосодержащих пород на значительных площадях, используя технологии гидроразрыва.

    В настоящее время сланцевый газ (СГ) представляет собой перспективный вид энергетических ресурсов. В США за 10 лет (1996-2006 гг.) добыча газа из сланцев выросла почти на 300 %, с 8 до 31 млрд м3/год . Объем СГ, добываемого в США в семи крупнейших бассейнах, по данным на 2009 г., достиг 67 млрд м3 (более 11 % от общего объема добычи газа в США). За пределами США добыча СГ началась в Канаде; объем добытого газа составил 5 млрд м3 (2,6 % от общего объема добычи газа в стране) .

    Предполагается, что значительными ресурсами газосодержащих сланцев обладают Нидерланды, Польша, Венгрия, Франция, Швеция и другие европейские страны, а также Китай. Ряд стран ЕС рассматривает СГ как реальную альтернативу поставкам традиционного газа, в том числе из России.

    Несмотря на положительный американский опыт, освоение ресурсов СГ, особенно в условиях густонаселенных стран Европы, имеет ряд существенных, часто непреодолимых ограничений.

    Рентабельная добыча СГ требует огромных газосборных площадей. В США с их значительной малозаселенной территорией можно бурить десятки тысяч скважин на участках в тысячи квадратных километров. В густонаселенной Европе добывающие компании вряд ли смогут себе это позволить, что резко уменьшает привлекательность проектов по добыче СГ. Значительная часть возможных проектов освоения сланцевого газа в Европе территориально приурочена к курортным (в том числе приморским) зонам Австрии, Польши, Италии, Англии и др.

    Кроме того, разработка месторождений СГ имеет серьезные экологические ограничения. В технологии гидроразрыва используются большие объемы воды («одна скважина - одно озеро») с песком и химическими добавками, которые могут проникать в грунтовые воды. Требует решения проблема сбора, хранения и утилизации отходов бурения, содержащих весь спектр используемых в процессе добычи специфических загрязняющих веществ. В связи с этим экологические ограничения в странах ЕС существенно ограничат прогнозный масштаб освоения СГ в Европе.

    В России горючие сланцы распространены в шести основных осадочных бассейнах (см. рис. 2). Следует подчеркнуть, что лишь 7 % мировых ресурсов горючих сланцев приурочено к Европейскому континенту, при этом большинство - к территориям стран Западной и Восточной Европы, а не РФ. Азиатский сектор РФ также существенно уступает по ресурсам горючих сланцев американским континентам.

    Для России, по экспертным оценкам ООО «Газпром ВНИИГАЗ», геологические ресурсы сланцевого газа могут составить 6-8 трлн м3. Другие авторы дают более оптимистические оценки - до 20 трлн м3, чуть меньше, чем суммарные оценки тех же авторов для Европы и Китая .

    В настоящее время все ресурсные оценки СГ для России - сугубо экспертные в силу крайне малой изученности объекта, но, без сомнения, имеют «право на жизнь».

    Освоение ресурсов СГ в России осложнено:

    1. Слабой геолого-геофизической изученностью, что обусловит низкую эффективность поисковоразведочных работ. В сланцевых бассейнах США изученность на порядок выше, что позволяет составлять геолого-технологические модели, адекватные реальным.

    2. Отсутствием специализированных технологий добычи. В России имеется опыт ГРП и горизонтального бурения, однако эти работы были ориентированы на иные объекты. Использование данных технологий для добычи сланцевого газа имеет свою геолого-экологическую специфику.

    3. Низкой буровой обеспеченностью работ. В США на объекты сланцевого газа ежегодно бурится несколько тысяч скважин. Такой масштаб бурения в ближайшие десятилетия в РФ экономически не целесообразен и маловероятен.

    4. Отсутствием в РФ необходимых экономических стимулов (например, «§ 29 о налоговых льготах» - законодательный акт Конгресса США «О политике в области добычи газа из нетрадиционных источников»). В равной степени это относится ко всем рассмотренным нетрадиционным газовым ресурсам - сланцевым и угольным газам, природным газогидратам.

    Для РФ изучение сланцевых газов актуально для мониторинга мировых перспектив его использования в качестве альтернативы российскому газу. Однако для собственной добычи этот вид нетрадиционных газовых скоплений промышленного интереса пока не представляет, в отличие от угольного метана и природных газогидратных залежей.

    Список литературы

    1. WOC 1 (Exploration, Production and Treatment of Natural Gas) Basic Activities Group report. Proc. of the 22nd World Gas Conference. WOCs Reports. Tokyo, Japan, 2003. P.p. 5-49.

    2. Якушев B.C. Ресурсы и перспективы освоения нетрадиционных источников газа в России / B.C. Якушев, Е.В. Перлова, В.А. Истомин, В.А. Кузьминов, Н.Н. Соловьев, Л.С. Салина, Н.А. Махо-нина, С.А. Леонов. - М.: ИРЦ Газпром, 2007. - 152 с.

    3. Mallik 2002 Gas Hydrate Production Research Well Program. Proceedings of the Mallik International Symposium «From Mallik to the Future» in Makuhari, Japan, 2003, 109 p.

    4. TakahashiH. Exploration for Natural Hydrate in Nankai-Trough Wells Offshore Japan / H. Takahashi, T. Yonezawa, Y. Takedomi. Paper presented at the 2001 Offshore Technology Conference in Houston, Texas, 30 April - 3 May 2001. OTC 13040.

    5. Перлова E.B. Первоочередные объекты для поиска гидратов метана в надпродуктивных толщах действующих месторождений севера Западной Сибири / Е.В. Перлова, B.C. Якушев, Н.А. Махо-нина, С.А. Леонов // Полезные ископаемые мирового океана - 4: Материалы Международной конференции 12-15 мая 2008 г., г. Санкт-Петербург. - СПб.: ВНИИОкеангеология, 2008 (CD).

    6. Perlova E.V. Submarine gas hydrate deposits: from genesis, geology to pecularities of gas production and treatment / E.V. Perlova, V.S. Yakushev, N.A. Makhonina, S.A. Leonov. Proceedings of 5th International Conference on Gas Hydrates, v. 3 (exploration, resources and environment), Trondheim, Norway, 2005. -Р 771-776.

    7. Мазуренко Л.Л. Газовые гидраты Мирового океана / Л.Л. Мазуренко, В.А. Соловьев, Т.В. Матвеева // Газовая промышленность. Спецвыпуск «Газовые гидраты». - 2006. - С. 2-6.

    8. Василев А. Оценка пространственного распространения и запасов газогидратов в Черном море / А. Василев, Л. Димитров // Геология и геофизика. - 2002. - Т. 43. - № 7. - С. 672-684.

    9. Имра Т.Ф. Получение метана из угольных пластов / Т.Ф. Имра, О.А. Шепелькова и др. // Информационно-аналитический сборник, 2001. - 77 с.

    10. Карасевич А.М. Кузнецкий бассейн - крупнейшая сырьевая база промысловой добычи метана из угольных пластов / А.М. Карасевич, В.Т. Хрюкин, Б.М. Зимаков и др. - М.: Издательство Академии горных наук, 2001. - 64 c.

    11. Kuuskraa V.A. Decade of Progress in Unconventional Gas Unconventional gas / VA. Kuuskraa // OJG Unconventional gas article. - 2007. - № 1. - Р. 1-10.

    12. Дмитриевский A.H. Сланцевый газ - новый вектор развития мирового рынка углеводородного сырья / А.Н. Дмитриевский, В.И. Высоцкий // Газовая промышленность. - 2010. - № 8. - С. 44-47.